

Annexes

_

La gestion de l'eau en industrie agroalimentaire

Guide opérationnel des bonnes pratiques et des pistes d'innovation

Le présent rapport s'inscrit dans le cadre d'une étude réalisée par Agria Grand Est et HYDREOS, avec la participation financière de l'Agence de l'Eau Rhin-Meuse.

Rédacteurs

AGRIA GRAND EST

M. Pierre-Lou CHAPOT, Chargé de Missions

M. Olivier FABRE, Responsable des pôles Techniques et Ressources

HYDREOS

Mme Sophie ALTMEYER, Responsable Technique

Mme Marjorie ETIQUE, Chef de Projets Dépôts et Biofilms

Mme Clémence PIERRE, Chargée de Missions

Relecteur

AGENCE DE L'EAU RHIN-MEUSE

M. Philippe RICOUR, Référent Innovation, Substances Toxiques, Sites et Sols Pollués

Date de rédaction / Date de publication

Novembre 2021 / Avril 2022

Nous remercions les entreprises agroalimentaires ayant accepté de participer à cette étude et de fournir en toute transparence les données ayant permis de réaliser ce travail. Nous remercions également les entreprises du secteur de la gestion de l'eau ayant accepté de présenter leurs solutions et innovations en matière de gestion durable de l'eau en agroalimentaire.

Annexes - Table des matières

Glossaire & Abréviations	3
Préambule	5
Contexte de l'étude	5
Les principaux usages de l'eau dans l'industrie agroalimentaire	5
La gestion de l'eau dans les industries agroalimentaires du Grand Est	6
L'importance de la règlementation et de son caractère évolutif	7
Approche financière des investissements liés à la gestion de l'eau en IAA	8
Références	9
Annexe – Référentiel des meilleures techniques disponibles dans les in agroalimentaire et laitière, focus sur l'eau	

Pour en savoir plus

Consultez le guide complet

Ce document est tiré du *Guide opérationnel des bonnes pratiques et des pistes* d'innovation sur la gestion de l'eau en industrie agroalimentaire, recueillant une compilation de 23 fiches opérationnelles visant à présenter les améliorations possibles en vue d'une gestion durable de l'eau au sein des sites industriels agroalimentaires.

Cliquez ici pour accéder au guide complet

https://www.iaa-lorraine.fr/nos-expertises/environnement-energie/eau/documentation/

Le guide complet

- Préambule : contexte et enjeux liés aux usages de l'eau en agroalimentaire
- Compilation de 23 fiches de bonnes pratiques et d'innovations pour une gestion durable de l'eau en industrie agroalimentaire, abordant les thématiques suivantes :
 - o Système de management de l'eau
 - Usages de l'eau et monitoring des consommations
 - o Optimisation du process
 - o Production de froid et de chaleur
 - o Optimisation des opérations de nettoyage et désinfection
 - o Réutilisation et recyclage de l'eau
 - Effluents et leur traitement
- Annexes

Contactez-nous

- → Pour en savoir plus sur une bonne pratique / technologie et être orientés vers les partenaires pertinents, contactez **Agria Grand Est** (<u>contact@iaa-lorraine.fr</u>) et **HYDREOS** (<u>contact@hydreos.fr</u>).
- → Pour en savoir plus sur les dispositifs d'aides financières, contactez l'**Agence de** l'Eau Rhin-Meuse (cdi@eau-rhin-meuse.fr).

Glossaire & Abréviations

ADEME: Agence de la transition écologique (anciennement Agence de l'environnement et de la maîtrise de l'énergie)

ACV (Analyse de cycle de vie) : outil d'évaluation globale et multicritère des impacts environnementaux [1]

Bon état chimique (d'une masse d'eau) : état chimique d'une masse d'eau répondant à un ensemble de valeurs de concentration en polluants fixées dans le tableau 2.3.2 de l'annexe V de la DCE pour une masse d'eau souterraine, et à l'annexe IX de la DCE pour une masse d'eau de surface (d'après la DCE [2])

Bon état écologique (d'une masse d'eau): état d'une masse d'eau de surface répondant à des valeurs définies pour un ensemble de paramètres biologiques, hydromorphologiques, physico-chimiques et de pollution, classé conformément à l'annexe V de la DCE (d'après la DCE [2])

COT : carbone organique total (*i.e.* quantité totale de matière organique exprimée en mg de carbone par litre)

Coût complet (ou coût total) de l'eau : approche du coût de l'eau intégrant l'ensemble des coûts directs et indirects associés à l'utilisation de l'eau (*cf.* Fiche n°2)

DBO: demande biochimique en oxygène (*i.e.* quantité d'oxygène consommée à 20°C et à l'obscurité pendant un temps donné pour assurer l'oxydation biologique des matières organiques présentes dans l'eau; on utilise conventionnellement la DBO5, quantité d'oxygène consommée après 5 jours d'incubation).

DCE: Directive Cadre sur l'Eau [2]

DCO : demande chimique en oxygène (*i.e.* quantification des matières oxydables présentes dans l'eau)

DREAL : direction régionale de l'Environnement, de l'Aménagement et du Logement

Efficacité hydrique: la stratégie d'efficacité hydrique vise à mieux consommer l'eau, mieux produire et moins rejeter, en agissant prioritairement sur la performance des usages et des traitements de l'eau. Elle repose sur une stratégie globale de recyclage et sur de nouvelles politiques de management de l'eau. [3] [4]

EIT : écologie industrielle territoriale

FDS : fiche de données de sécurité, formulaire contenant des données relatives aux propriétés d'un produit chimique

HACCP: Hazard Analysis and Critical Control Point (i.e. méthode de maîtrise de la sécurité sanitaire des denrées alimentaires selon les règlementations en vigueur au niveau européen ou national)

IAA: industrie agroalimentaire

ICPE: installation classée pour la protection de l'environnement, « les usines, ateliers, dépôts, chantiers et, d'une manière générale, les installations [...], qui peuvent présenter des dangers ou des inconvénients soit pour la commodité du voisinage, soit pour la santé, la sécurité, la salubrité publiques, soit pour l'agriculture, soit pour la protection de la nature, de l'environnement et des paysages, soit pour l'utilisation économe des sols naturels, agricoles ou forestiers, soit pour l'utilisation rationnelle de l'énergie, soit pour la conservation des sites et des monuments ainsi que des éléments du patrimoine archéologique. » d'après le Code de l'Environnement [5]

IED (directive): directive 2010/75/UE relative aux émissions industrielles

INERIS: institut national de l'environnement industriel et des risques

Innovation: d'après l'INSEE, « l'innovation désigne l'introduction sur le marché d'un produit ou d'un procédé nouveau ou significativement amélioré par rapport à ceux précédemment élaborés par l'unité légale. Deux types d'innovation sont distingués : les innovations de produits (biens ou services) et de procédés (incluant les innovations d'organisation et de marketing) » [6]. Le degré de maturité d'une innovation technologique peut être mesuré par l'échelle TRL (« Technology readiness level ») [7].

INRS : institut national de recherche et de sécurité

ISO 14001: la norme ISO 14001 définit les critères d'un système de management environnemental et se prête à la certification. Elle propose un cadre que les entreprises peuvent appliquer pour mettre en place un système efficace de management environnemental.

ISO 50001: la norme ISO 50001 propose des modalités pratiques visant à réduire la consommation d'énergie par la mise en œuvre d'un système de management de l'énergie (SME). L'eau peut être intégrée à ce système de management.

Masse d'eau de surface: une partie distincte et significative des eaux de surface telles qu'un lac, un réservoir, une rivière, un fleuve ou un canal, une partie de rivière, de fleuve ou de canal, une eau de transition ou une portion d'eaux côtières (d'après la DCE [2])

Masse d'eau souterraine : un volume distinct d'eau souterraine à l'intérieur d'un ou de plusieurs aquifères (d'après la DCE [2])

MES: matières en suspension (*i.e.* quantité de matières (exprimée en poids sec) contenues dans l'eau et retenues par un filtre de porosité donnée (ou séparées de l'eau dans des conditions de centrifugation données)

MTD: meilleure technique disponible (ou BAT pour *Best Available Technologies*). Les MTD sont définies par la directive 2010/75/UE relative aux émissions industrielles (« directive IED »).

NEP: nettoyage en place (en anglais, CIP: clean in place)

Polissage (des effluents) : traitement tertiaire des effluents (affinage des effluents) faisant appel à des procédés physiques ou biologiques supplémentaires sur un effluent préalablement épuré

REACH (règlement): Règlement (CE) n° 1907/2006 du 18/12/06 concernant l'enregistrement, l'évaluation et l'autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances (*Registration, Evaluation, Authorization and restriction of CHemicals*)

Refroidisseur adiabatique : refroidisseur de fluide liquide par échange avec l'air ambiant préalablement refroidi grâce à l'évaporation de l'eau

ROI : return on investment (i.e. comparaison entre l'investissement émis et reçu)

RSDE (arrêté) : arrêté du 24 août 2017 modifiant dans une série d'arrêtés ministériels les dispositions relatives aux rejets de substances dangereuses dans l'eau (RSDE) en provenance des installations classées pour la protection de l'environnement

RSE : responsabilité sociétale des entreprises

STEP : station d'épuration des eaux usées

Substance dangereuse : « substance ou groupe de substances qui sont toxiques, persistantes et bioaccumulables, et autres substances ou groupes de substances qui sont considérées, à un degré équivalent, comme sujettes à caution » (d'après la DCE [2])

Substance écotoxique : substance nocive pour l'environnement

Substance toxique : substance nocive pour l'organisme humain et / ou des êtres vivants

TAR : tour aéroréfrigérante

TGAP: taxe générale sur les activités polluantes

Préambule

Contexte de l'étude

En France, le secteur agroalimentaire représente le troisième plus gros consommateur¹ en eau douce dans le secteur de l'industrie, derrière les secteurs de l'industrie chimique et pharmaceutique et les producteurs d'électricité [8].

La gestion de l'eau est un enjeu fort pour le secteur agroalimentaire, que ce soit du point de vue économique en lien avec la maitrise des coûts, du point de vue des impacts environnementaux, mais aussi du point de vue sociétal avec un enjeu d'image lié à la RSE. Par ailleurs, ces dernières années, les sécheresses répétées et autres évènements extrêmes liés au dérèglement climatique provoquent des tensions croissantes pour l'accès à la ressource en eau. En effet, les données du World Resources Institute mettent en avant un risque de sécheresse « moyen » à « moyen-haut » sur l'ensemble du territoire français et en région Grand Est, avec des niveaux de stress hydrique variables de « bas » à « extrêmement haut » sur l'ensemble du territoire [9]. Par ailleurs, une étude menée en 2019 par la DREAL Grand Est a fait ressortir une dégradation importante de la qualité de l'eau douce sur le territoire, avec 50% des masses d'eau souterraine affichant un état chimique médiocre [10].

Dans ce contexte, Agria Grand Est et HYDREOS ont lancé en 2020 une étude pour accompagner la dynamique des entreprises du Grand Est vers des modes de gestion plus performants et durables de l'eau, avec la participation financière de l'Agence de l'eau Rhin-Meuse. Grâce à une enquête réunissant plus de 60 entreprises et à une étude approfondie de 25 sites agroalimentaires de toutes tailles et de tous secteurs d'activités, ce projet a permis de dresser un état des lieux de la situation en région Grand Est, d'identifier un ensemble de bonnes pratiques de gestion de l'eau en agroalimentaire, mais aussi d'identifier des problématiques, des pistes d'amélioration et d'innovation à l'échelle des sites et à l'échelle de la filière.

L'ensemble des avancées et des livrables de l'étude sont disponibles en cliquant sur le lien ci-contre : https://www.iaa-lorraine.fr/nos-expertises/environnement-energie/eau/

Les principaux usages de l'eau dans l'industrie agroalimentaire

L'eau est au cœur des procédés agroalimentaires et revêt plusieurs fonctions essentielles à la transformation de produits alimentaires et au maintien de la qualité sanitaire de la production. L'eau peut être utilisée principalement :

- En tant que fluide thermique
 - Production de chaleur : vapeur, eau chaude ou surchauffée (échangeurs), etc.
 - Circuit de refroidissement : TAR, refroidisseurs adiabatiques, etc.
- Pour le nettoyage des équipements : NEP, machines à laver, nettoyages manuels
- Pour le lavage/transport des matières premières, des produits finis ou intermédiaires
- En tant qu'ingrédient
- Pour l'hygiène du personnel

Figure 1 – Les usages de l'eau en industrie (source : Eaufrance)

¹ Hors prélèvement pour la production d'eau potable, alimentation des canaux, production d'électricité, irrigation

Les deux usages les plus importants en termes de volume sont les circuits de refroidissement et le nettoyage des équipements même si des spécificités de sites ou de secteurs d'activité peuvent modifier cette hiérarchie. La bibliographie indique en effet que la part des prélèvements d'eau destinée au refroidissement est de 10% pour l'industrie des viandes et jusqu'à 50% pour l'industrie du lait et 60% pour l'industrie des boissons [11]. L'importance de ces deux usages a également été constatée au cours de notre étude, avec généralement une importance plus forte des usages de l'eau dédiée aux utilités (refroidissement notamment) sur les sites de plus grande dimension.

Au-delà des usages destinés à la production à proprement parler, il est important également de considérer la question des effluents et de leur traitement. Certains sites de grandes dimensions disposent de STEP destinées exclusivement au traitement des effluents industriels du site et, parfois, les rejets rejoignent le réseau d'assainissement associé à une station d'épuration publique. En effet, la nécessité de tels traitements s'impose du fait que les effluents issus des process peuvent être chargés en DCO, DBO et MES mais également en substances toxiques et/ou écotoxiques dont certaines peuvent être visées par la DCE (c'est le cas par exemple de certains rejets associés au traitement des eaux des circuits de tours aéroréfrigérantes).

La gestion de l'eau dans les industries agroalimentaires du Grand Est

Le bassin Rhin-Meuse et la région Grand Est ne sont pas épargnés par les enjeux liés à la ressource en eau, du point de vue quantitatif et qualitatif. Les résultats de notre enquête auprès de 61 entreprises agroalimentaires du Grand Est ont montré que près de 30% des entreprises répondantes ont déjà dû faire face à une situation de restriction d'eau.

Les entreprises sont de plus en plus sensibilisées à ces enjeux et nous avons observé une volonté et une dynamique des industriels pour prendre en main les questions liées à la gestion de l'eau. En effet, 80% des entreprises répondantes considèrent le poste « eau » comme important ou très important, 88% d'entre elles connaissent consommation d'eau annuelle en volume et 55% ont récemment² réalisé ou planifié un investissement pour réduire la consommation et/ou les prélèvements en eau.

Malgré cette dynamique positive, près de deux tiers des entreprises répondantes se considèrent peu ou pas compétente sur au moins un des postes associés à la gestion de l'eau. Le mangue de compétences apparait donc comme un frein important pour progresser vers une gestion de l'eau plus performante. L'un des enjeux consiste donc à apporter entreprises de tout niveau l'accompagnement nécessaires pour leur donner les moyens de poursuivre sur cette dynamique positive.

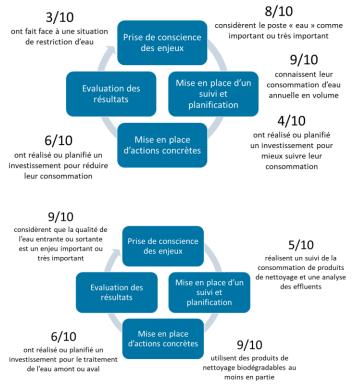


Figure 2 – La dynamique d'amélioration continue sur la gestion de l'eau (résultats de l'enquête auprès de 61 entreprises agroalimentaires)

² Investissement réalisé dans les trois dernières années ou planifié dans les deux prochaines années

Il apparait aujourd'hui nécessaire de prendre en compte la gestion de l'eau dans sa globalité, en intégrant les problématiques quantitatives et qualitatives, ainsi que les liens étroits qui existent entre ces deux volets. La tendance est aujourd'hui à la conception de systèmes et de réseaux complexes et interdépendants (système de réutilisation, de récupération de chaleur, réseaux d'EIT, etc.) qui nécessitent de développer une vision systémique en prenant en compte les opportunités et les contraintes associées à moyen et long terme.

L'importance de la règlementation et de son caractère évolutif

Tout comme les usages de l'eau, la règlementation associée à la gestion de l'eau en agroalimentaire se trouve à l'interface de la réglementation liée la santé publique et de la réglementation environnementale. Ainsi, en Europe, les usages de l'eau en agroalimentaire sont encadrés par le Paquet Hygiène, notamment les règlements (CE) 852/2004 et (CE) 853/2004, et la directive 98/83/CE relative à la qualité des eaux destinées à la consommation humaine [12]. Cette dernière a été dernièrement revue et sera abrogée en janvier 2023, et remplacée par la nouvelle directive « Eau potable », la directive (UE) 2020/2184. Cette révision introduit notamment de nouvelles normes de qualité dans l'eau potable, la mise en place d'une approche basée sur les risques ou encore le renforcement des exigences en matière de matériaux au contact de l'eau [13]. Parallèlement, la directive cadre sur l'eau (DCE) [14], le règlement REACH [15] et la directive IED [16] ont instauré depuis 2000 un cadre visant les émissions de substances dans l'eau et à préserver le bon état chimiques et écologiques des masses d'eau.

L'annexe 1 du présent document dresse un « référentiel IED », avec un focus sur la gestion de l'eau. Il présente une synthèse des conclusions sur les meilleures techniques disponibles (MTD) dans les industries agroalimentaire et laitière, en lien avec l'efficacité hydrique.

En France, l'utilisation d'eau en agroalimentaire est encadrée par le Code de la santé publique qui définit que « toutes les eaux utilisées dans les entreprises alimentaires pour la fabrication, la transformation, la conservation ou la commercialisation de produits ou de substances, destinés à la consommation humaine, qui peuvent affecter la salubrité de la denrée alimentaire finale » doivent être des eaux destinées à la consommation humaine [12]. Et même si l'article L1322-14 ouvre la possibilité d'utiliser de l'eau impropre à la consommation dans les entreprises agroalimentaires, « lorsque la qualité de ces eaux n'a aucune influence, directe ou indirecte, sur la santé de l'usager et sur la salubrité de la denrée alimentaire finale » [17], le décret d'application de ces dispositions n'existe pas à ce jour [18].

Des discussions sont en cours avec notamment la mise en consultation en septembre 2020 d'un « projet de décret relatif à l'utilisation des eaux de pluie et la mise en œuvre d'une expérimentation pour encadrer l'utilisation d'eaux usées traitées » [19]; puis en octobre 2021 d'un projet d'un décret et d'un arrêté « permettant la mise en œuvre d'une expérimentation sur l'utilisation des eaux usées traitées » [20]. Mais « l'expérimentation ne concerne pas les usages dans les entreprises alimentaires » [21].

Parmi les dernières évolutions, on peut noter également la publication de l'arrêté du 10/09/2021 relatif à la protection des réseaux d'adduction et de distribution d'eau destinée à la consommation humaine contre les pollutions par retours d'eau [22].

Sur le volet environnemental, concernant les ICPE, les arrêtés du 02/02/1998 [23], modifié par l'arrêté « RSDE » du 24/08/2017 [24], du 10/07/1990 [25] ou encore du 04/10/2010 [26], encadrent les prélèvements d'eau et les rejets de substances dans l'eau. La réglementation spécifique aux tours aéroréfrigérantes, notamment les arrêtés ministériels du 14 décembre 2013, vise à maitriser le risque de prolifération et de dispersion de légionelles tout en encadrant les risques de pollution notamment au niveau des rejets aqueux [27].

Approche financière des investissements liés à la gestion de l'eau en IAA

Une idée encore répandue consiste à considérer les investissements liés à la gestion de l'eau comme étant souvent peu rentables d'un point de vue économique. Si cela peut représenter une réalité quand on considère uniquement les coûts directs de l'eau (consommation et traitement des effluents), cela devrait être remis en perspective par la prise en compte du coût réel de l'eau, le coût complet (cf. Fiche n°2). En effet, en intégrant les coûts de fonctionnement des installations (énergie, personnel, analyses, etc.), les coûts indirects liés à la performance, aux risques sanitaires, aux risques de restriction et de dégradation de l'image de l'entreprise, la durabilité des équipements, etc., le coût réel de l'eau au mètre cube est considérablement augmenté. Chaque économie d'eau en devient d'autant plus pertinente en termes d'économie financière. Investir sur pour une meilleure gestion de la ressource en eau peut représenter aujourd'hui un avantage stratégique non négligeable pour les entreprises agroalimentaires.

Par ailleurs, les dispositifs d'accompagnement et d'aides financières proposées par les pouvoirs publics permettent également de réduire les temps de retour des investissements permettant la mise en place d'une meilleure gestion de l'eau. Les industriels peuvent donc solliciter les Agences de l'eau, qui sont en mesure de proposer des aides sur le sujet de l'eau et de sa gestion durable, ou encore la Région ou l'ADEME sur certaines thématiques annexes.

Enfin, il est important de noter que certaines bonnes pratiques simples (e.g. système de recyclages simples, pratiques de nettoyage, valorisation des pertes et des effluents) nécessitant de faibles investissements financiers, peuvent être à l'origine d'économies d'eau substantielles.

Références

- [1] ADEME, «Qu'est-ce que l'ACV ?,» 18 juin 2018. [En ligne]. Available: https://expertises.ademe.fr/economie-circulaire/consommer-autrement/passer-a-laction/dossier/lanalyse-cycle-vie/quest-lacv#:~:text=L'analyse%20du%20cycle%20de%20vie%20est%20l'outil%20le,de%20services%2 0sur%20l'environnement.. [Accès le 22 janvier 2022].
- [2] EUR-Lex, «Directive 2000/60/CE du Parlement européen et du Conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l'eau,» 2000. [En ligne]. Available: https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=celex%3A32000L0060. [Accès le 22 Novembre 2021].
- [3] Aquassay, «Le concept d'efficacité hydrique,» 2019. [En ligne]. Available: https://aquassay.com/efficacite-hydrique/. [Accès le 22 Janvier 2022].
- [4] BWT, «L'efficacité hydrique pour un usage intelligent des eaux de process,» 06 aout 2020. [En ligne]. Available: https://www.bwt.com/fr-fr/professionnels/industrie/blog/articles/l-efficacite-hydrique-pour-un-usage-intelligent-des-eaux-de-process/. [Accès le 22 janvier 2022].
- [5] Legifrance, «Code de l'environnement,» [En ligne]. Available: https://www.legifrance.gouv.fr/codes/section_lc/LEGITEXT000006074220/LEGISCTA00000614374 8/. [Accès le 22 janvier 2022].
- [6] INSEE, «Innovation,» 17 novembre 2020. [En ligne]. Available: https://www.insee.fr/fr/metadonnees/definition/c1182. [Accès le 14 janvier 2022].
- [7] DGA, «Quelques explications sur l'échelle des TRL,» 2009. [En ligne]. Available: https://www.entreprises.gouv.fr/files/files/directions_services/politique-et-enjeux/innovation/tc2015/technologies-cles-2015-annexes.pdf. [Accès le 22 janvier 2022].
- [8] Ministère de la transition écologique, «Les prélèvements en eau de l'industrie,» 2016. [En ligne]. Available: http://www.donnees.statistiques.developpement-durable.gouv.fr/lesessentiels/essentiels/Industrie-eau.html. [Accès le 09 août 2021].
- [9] World Resources Institute, «Aqueduct Water risk atlas,» [En ligne]. Available: https://www.wri.org/applications/aqueduct/water-risk-atlas.
- [10] DREAL Grand Est, «L'état des masses d'eau 2019,» 2020. [En ligne]. Available: http://www.grand-est.developpement-durable.gouv.fr/l-etat-des-masses-d-eau-2019-a19356.html. [Accès le 09 août 2021].
- [11] S. CHERET, «Les grandes catégories d'usages de l'eau dans l'industrie,» Techniques de l'ingénieur, 2017.
- [12] ACTALIA (Minimeau), «Réglementations et recommandations sur l'eau utilisée dans les industries alimentaires,» 2019.
- [13] Ministère des solidarités et de la santé, «Une nouvelle directive eau potable,» 23 Juillet 2021. [En ligne]. Available: https://solidarites-sante.gouv.fr/sante-et-environnement/eaux/article/une-nouvelle-directive-eau-potable. [Accès le 13 Janvier 2022].
- [14] Office des publications de l'Union européenne, «La bonne qualité de l'eau en Europe (directive-cadre sur l'eau),» 2017. [En ligne]. Available: https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=legissum%3Al28002b. [Accès le 09 août 2021].
- [15] Ministère de la Transition écologique, «La réglementation REACH,» [En ligne]. Available: https://www.ecologie.gouv.fr/reglementation-reach. [Accès le 09 août 2021].
- [16] INERIS Institut national de l'environnement industriel et des risques, «Présentation de la directive IED,» 2020. [En ligne]. Available: https://aida.ineris.fr/node/193. [Accès le 09 août 2021].

- [17] Legifrance, «Article L1322-14 du Code de la santé publique,» 19 janvier 2018. [En ligne]. Available: https://www.legifrance.gouv.fr/codes/article_lc/LEGIARTI000036507554/. [Accès le 13 janvier 2021].
- [18] ARS Grand Est, «EAUX UTILISEES DANS LES ENTREPRISES ALIMENTAIRES: CONTEXTE REGLEMENTAIRE Code de la santé publique,» Décembre 2021. [En ligne]. Available: https://www.youtube.com/watch?v=HiD1qSucpL0.
- [19] Ministère de la transition écologique, «Consultations publiques Projet de décret relatif à l'utilisation des eaux de pluie et la mise en œuvre d'une expérimentation pour encadrer l'utilisation d'eaux usées traitées,» septembre 2020. [En ligne]. Available: http://www.consultations-publiques.developpement-durable.gouv.fr/projet-de-decret-relatif-a-l-utilisation-des-eaux-a2211.html?id_rubrique=2. [Accès le décembre 2021].
- [20] Ministère de la transition écologique, «Consultations publiques Un décret et un arrêté permettant la mise en œuvre d'une expérimentation sur l'utilisation des eaux usées traitées,» septembre 2021. [En ligne]. Available: http://www.consultations-publiques.developpement-durable.gouv.fr/un-decret-et-un-arrete-permettant-la-mise-en-a2510.html. [Accès le janvier 2022].
- [21] DREAL Grand Est, «Le point sur la réglementation EAUX UTILISEES DANS LES ENTREPRISES ALIMENTAIRES,» 01 décembre 2021. [En ligne]. Available: https://www.youtube.com/watch?v=HiD1qSucpL0.
- [22] Legifrance, «Arrêté du 10 septembre 2021 relatif à la protection des réseaux d'adduction et de distribution d'eau destinée à la consommation humaine contre les pollutions par retours d'eau,» 10 septembre 2021. [En ligne]. Available: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000044060748. [Accès le janvier 2022].
- [23] Legifrance, «Arrêté du 2 février 1998 relatif aux prélèvements et à la consommation d'eau ainsi qu'aux émissions de toute nature des installations classées pour la protection de l'environnement soumises à autorisation,» 06 septembre 2021. [En ligne]. Available: https://www.legifrance.gouv.fr/loda/id/LEGITEXT000005625281/. [Accès le janvier 2022].
- [24] Legifrance, «Arrêté du 24 août 2017 modifiant dans une série d'arrêtés ministériels les dispositions relatives aux rejets de substances dangereuses dans l'eau en provenance des installations classées pour la protection de l'environnement,» 01 janvier 2018. [En ligne]. Available: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000035734077/. [Accès le janvier 2022].
- [25] Legifrance, «Arrêté du 10 juillet 1990 relatif à l'interdiction des rejets de certaines substances dans les eaux souterraines en provenance d'installations classées,» 30 avril 2010. [En ligne]. Available: https://www.legifrance.gouv.fr/loda/id/LEGITEXT000006076302/. [Accès le janvier 2022].
- [26] Legifrance, «Arrêté du 4 octobre 2010 relatif à la prévention des risques accidentels au sein des installations classées pour la protection de l'environnement soumises à autorisation,» 03 octobre 2021. [En ligne]. Available: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000023081900/. [Accès le janvier 2022].
- [27] INERIS, «Tours aéroréfrigérantes,» 17 janvier 2020. [En ligne]. Available: https://aida.ineris.fr/node/227. [Accès le 20 janvier 2022].
- [28] Les Echos, «Comment l'industrie peut réduire son « empreinte eau »,» Juin 2017. [En ligne]. Available: https://www.lesechos.fr/2017/06/comment-lindustrie-peut-reduire-son-empreinte-eau-171759. [Accès le Octobre 2021].
- [29] SNP Buses de Pulvérisation, «Comment nettoyer efficacement les cuves industrielles pour économiser de l'eau, du temps et de l'argent,» [En ligne]. Available: https://www.busesdepulverisation.fr/comment-optimiser-le-nettoyage-de-cuves-pour-%C3%A9conomiser-de-l-eau-du-temps-et-de-l-argent. [Accès le 10 septembre 2021].
- [30] Véronique Pasquet, «Les stations d'épuration dans l'industrie agroalimentaire : des intallations à surveiller,» Face au Risque, décembre 2018.
- [31] RS, «Qu'est-ce qu'un capteur IoT ?,» [En ligne]. Available: https://fr.rs-online.com/web/generalDisplay.html?id=discovery-conception-electronique/qu-est-ce-qu-un-capteur-iot. [Accès le 22 janvier 2022].

Annexe – Référentiel des meilleures techniques disponibles dans les industries agroalimentaire et laitière, focus sur l'eau

Le référentiel IED pris en compte dans le présent guide se réfère aux conclusions sur les meilleures techniques disponibles (MTD) dans les industries agroalimentaire et laitière publiées dans la décision d'exécution 2019/2031 rendue le 12 novembre 2019 par la Commission européenne.

Ces conclusions listent et détaillent 15 MTD générales applicables à tous les secteurs d'activité et 22 MTD spécifiques à un secteur d'activité en particulier. Elles détaillent également des niveaux d'émissions associés aux MTD (NEA-MTD) et des niveaux indicatifs de performance environnementale spécifique à certains secteurs d'activités pour la consommation d'énergie et les rejets d'effluents aqueux.

	Conclusions sur les MTD spécifiques à un secteur d'activité												
	Conclusions générales sur les MTD	Alimentation animale	Production de bière	Laiteries	Production d'éthanol	Transformation des poissons, mollusques et crustacés	Fruits et légumes	Meunerie	Transformation de la viande	Transformation d'oléagineux et raffinage des huiles végétales	Boissons non alcoolisées et nectars/jus	Production d'amidon	Fabrication de sucre
Systèmes de management	MTD 1 : Système de management environnemental												
environnemental	MTD 2 : Inventaire des consommations et flux												
Surveillance	MTD 3 : Pour les émissions dans l'eau, surveillance des paramètres de procédé à certains points clés												
	MTD 4 : Surveillance des émissions dans l'eau MTD 5												
Efficacité énergétique	MTD 6 : Efficacité énergétique	MTD 16 *	MTD 18 *	MTD 21 *			MTD 27 *	*	*	MTD 30	MTD 33 *	*	MTD 35 *
Consommation d'eau et rejet des effluents aqueux	MTD 7 : Réduction de la consommation d'eau et du volume d'effluents	*	*	*		MTD 25	*		*	*	*	*	*
Substances dangereuses	MTD 8 : Techniques de nettoyage préconisées MTD 9												
Utilisation efficace des ressources	MTD 10 : Traitement des résidus et effluents aqueux												
Déchets			MTD 19	MTD 22	MTD 24								
Emissions dans l'eau	MTD 11 : Stockage tampon des effluents aqueux MTD 12 : Traitement des												
i eau	effluents aqueux (NEA-MTD) **												
Emissions dans l'air		MTD 17 **	MTD 20 **	MTD 23 **		MTD 26		MTD 28 **	MTD 29 **	MTD 31		MTD 34 **	MTD 36 MTD 37 **
Bruit	MTD 13 / MTD 14												
Odeurs Portos d'hovano	MTD 15									MTD 32			
Pertes d'hexane										**			

En bleu, les MTD en lien direct ou indirect avec la gestion de l'eau

^{*} Niveaux indicatifs de performance environnementale

^{**} Niveaux d'émissions associés aux MTD (NEA-MTD)

Nous présentons dans ce référentiel une synthèse des MTD en lien avec l'efficacité hydrique, issues des conclusions générales et des conclusions spécifiques aux secteurs des brasseries, des laiteries, de la transformation des fruits et légumes et de la transformation de la viande. Pour plus de détails, il convient de se référer aux conclusions sur les meilleures techniques disponibles dans les industries agroalimentaire et laitière, disponibles en ligne en cliquant sur ce lien :

→ https://aida.ineris.fr/sites/default/files/BATC FDM CELEX 32019D2031 FR.pdf

1 - Conclusions générales sur les MTD

1.1 - Systèmes de management environnemental (SME)

MTD 1. Mettre en place et appliquer un système de management environnemental (SME) dont les caractéristiques sont détaillées sur les conclusions sur les MTD.

<u>MTD 2.</u> Etablir, maintenir à jour et à réexaminer régulièrement, dans le cadre du système de management environnemental (voir la MTD 1), un inventaire de la consommation d'eau, d'énergie et de matières premières ainsi que des flux d'effluents aqueux et gazeux qui intègre tous les éléments suivants :

- des informations sur les procédés de production agroalimentaire et laitière ;
- des informations sur la consommation et l'utilisation de l'eau, et détermination des mesures permettant de réduire la consommation d'eau et le volume des effluents aqueux (voir la MTD 7) ;
- des informations sur le volume et les caractéristiques des flux d'effluents aqueux ;
 [...]
- des informations sur la consommation et l'utilisation d'énergie, sur la quantité de matières premières utilisée ainsi que sur la quantité et les caractéristiques des résidus produits, et détermination des mesures permettant d'améliorer continûment l'utilisation efficace des ressources (voir par exemple MTD 6 et MTD 10);
- définition et mise en œuvre d'une stratégie de surveillance appropriée en vue d'accroître l'utilisation efficace des ressources. La surveillance peut prendre notamment la forme de mesurages directs, de calculs ou de relevés réalisés à une fréquence appropriée. La surveillance s'effectue au niveau le plus approprié (par exemple, au niveau du procédé, de l'unité ou de l'installation).

1.2 - Surveillance

MTD 3. Pour les émissions dans l'eau à prendre en considération d'après l'inventaire des flux d'effluents aqueux (voir MTD 2), la MTD consiste à surveiller les principaux paramètres de procédé (par exemple, surveillance continue du débit des effluents aqueux, de leur pH et de leur température) à certains points clés (par exemple, à l'entrée et/ou à la sortie de l'unité de prétraitement, à l'entrée de l'unité de traitement final, au point où les émissions sortent de l'installation).

MTD 4. La MTD consiste à surveiller les émissions dans l'eau au moins à la fréquence indiquée ci-après et conformément aux normes EN. En l'absence de normes EN, la MTD consiste à recourir aux normes ISO, aux normes nationales ou à d'autres normes internationales garantissant l'obtention de données d'une qualité scientifique équivalente.

Substance/paramètre	Norme(s)	Fréquence minimale de surveillance (1)		
Demande chimique en oxygène (DCO) (2) (3)	Pas de norme EN			
Azote total (NT) (2)	Plusieurs normes FN (nar exemple FN			
Carbone organique total (COT) (2) (3) EN 1484		Une fois par jour (4)		
Phosphore total (PT) (2) Plusieurs normes EN (par exemple, EN I 6878, EN ISO 15681-1 et -2, EN ISO 11				
Matières en suspension totales (MEST) (2)	EN 872			
Demande biochimique en oxygène (DBOn) (2)	EN 1899-1			
Chlorures (Cl-)	Plusieurs normes EN (par exemple, EN ISO 10304-1, EN ISO 15682)	Une fois par mois		

⁽¹⁾ La surveillance ne s'applique que lorsque la substance concernée est pertinente pour le flux d'effluents aqueux, d'après l'inventaire mentionné dans la MTD 2.

- (2) La surveillance ne s'applique qu'en cas de rejet direct dans une masse d'eau réceptrice.
- (3) Le paramètre de surveillance est soit le COT, soit la DCO. La surveillance du COT est préférable car elle n'implique pas l'utilisation de composés très toxiques.
- (4) S'il est établi que les niveaux d'émission sont suffisamment stables, la fréquence de surveillance pourra être abaissée, mais elle sera en tout état de cause d'au moins une fois par mois.

1.3 - Efficacité énergétique

MTD 6. Intégrer un plan d'efficacité énergétique dans le SME (voir MTD 1) et utiliser une combinaison appropriée de techniques courantes, par exemple :

- la récupération de chaleur au moyen d'échangeurs thermiques et/ou de pompes à chaleur (y compris la recompression mécanique de vapeur),
- la réduction au minimum de la purge de la chaudière,
- l'optimisation des systèmes de distribution de vapeur,
- le préchauffage de l'eau d'alimentation (y compris l'utilisation d'économiseurs),
- les systèmes de commande de procédés,
- la réduction des pertes thermiques par calorifugeage,
- les variateurs de vitesse,
- l'évaporation à multiples effets.

D'autres techniques sectorielles visant à accroître l'efficacité énergétique sont indiquées dans les sections 2 à 13 des conclusions sur les MTD.

MTD 7. Réduction de la consommation d'eau et du volume des effluents aqueux rejetés, en appliquant une ou plusieurs des techniques suivantes :

- Techniques courantes :
 - o Recyclage et / ou réutilisation de l'eau traitée ou non : e.g. pour le nettoyage, le lavage, le refroidissement, ou le procédé lui-même
 - o Optimisation du débit d'eau : dispositifs de régulation automatique, *e.g.* cellules photoélectriques, vannes de débit, vannes thermostatiques
 - Optimisation des buses et des canalisations d'eau : nombre approprié et emplacement correct ; réglage de la pression d'eau
 - Séparation des flux d'eau : séparer ceux qui ne nécessitent pas de traitement de ceux qui doivent en subir un, afin de recycler l'eau non souillée

- Techniques liées aux opérations de nettoyage :
 - Nettoyage à sec : éliminer les matières résiduelles, e.g. avec de l'air comprimé, des systèmes à vide, des collecteurs équipés de grilles
 - Système de curage des canalisations : via système composé de lanceurs, receveurs, dispositif à air comprimé et projectile, qui circule dans le réseau de canalisations et sépare le produit et l'eau de rinçage (vannes en ligne)
 - Nettoyage à haute pression : pulvérisation d'eau sur la surface à nettoyer à une pression comprise entre 15 et 150 bars
 - Optimisation du dosage des produits chimiques et de l'utilisation de l'eau dans le nettoyage en place (NEP) : optimisation de la conception du NEP et mesure de la turbidité, conductivité, température et pH pour doser de façon optimale la quantité d'eau chaude et de produits chimiques
 - Nettoyage basse pression à l'aide de produits moussants et / ou de gel : pour nettoyage murs, sols, surfaces des équipements
 - Optimisation de la conception et de la construction des équipements et des zones de procédés : de manière à en faciliter le nettoyage, en tenant compte des exigences en matière d'hygiène
 - Nettoyage des équipements dès que possible : pour éviter le durcissement des résidus

1.5 - Substances dangereuses

MTD 8. Réduction de l'utilisation de substances dangereuses, notamment pour le nettoyage et la désinfection, en appliquant une ou plusieurs des techniques suivantes :

- Sélection appropriée de produits chimiques de nettoyage et / ou de désinfectants
- Réutilisation des produits chimiques de nettoyage dans le nettoyage en place (NEP)
- Nettoyage à sec
- Optimisation de la conception et de la construction des équipements et des zones de procédés

1.6 - Utilisation efficace des ressources

<u>MTD 10.</u> Utilisation plus efficace des ressources, en appliquant une ou plusieurs des techniques suivantes :

- Digestion anaérobie : traitement des résidus biodégradables par des microorganismes, aboutissant à la formation de biogaz (ensuite utilisé comme combustible, e.g. dans moteur à gaz ou chaudière) et de digestat (ensuite utilisé comme amendement du sol)
- Utilisation des résidus : e.g. comme aliments pour animaux
- Séparation des résidus : e.g. via dispositifs de protection contre les éclaboussures, d'écrans, de volets, de collecteurs, de bacs d'égouttage et d'auges bien placés
- Récupération et réutilisation dans l'unité de mélange des résidus provenant du pasteurisateur comme matières premières
- Récupération du phosphore sous forme de struvite (cf. MTD 12 g.)
- Epandage des effluents aqueux sur les sols après un traitement approprié (uniquement applicable si bénéfice agronomique avéré, niveau de contamination faible et pas d'incidence négative sur environnement)

1.7 - Emissions dans l'eau

MTD 11. Prévision d'une capacité appropriée de stockage tampon des effluents aqueux afin d'éviter les émissions non maîtrisées dans l'eau. La capacité appropriée de stockage tampon est déterminée par une évaluation des risques.

MTD 12. Réduction des émissions dans l'eau, en appliquant une ou plusieurs des techniques suivantes :

Technique	Polluants habituellement visés					
Traitement préliminaire, primaire et général						
Homogénéisation	Tous polluants					
Neutralisation	Acides, alcalis					
Séparation physique, via dégrilleurs, tamis, dessableurs, dégraisseurs, déshuileurs, décanteurs primaires	Solides grossiers, matières en suspension, huile, graisse					
Traitement aérobie et / ou anaérobie (secondaire)						
Traitement aérobie et / ou anaérobie (secondaire), e.g. procédé par boues activées, lagune aérobie, procédé par lit de boues expansées, procédé par contact anaérobie, bioréacteur à membrane	Composés organiques biodégradables					
Dénitrification						
Nitrification et / ou dénitrification	Azoto total ammonium /					
Nitrification partielle – oxydation anaérobie des ions ammonium	Azote total, ammonium / ammoniac					
Récupération et / ou élimination du phosphore						
Récupération du phosphore sous forme de struvite						
Précipitation	Phosphore total					
Extraction biologique renforcée du phosphore						
Elimination finale des matières solides						
Coagulation et floculation	Matières en suspension					
Sédimentation						
Filtration, e.g. filtration sur sable, microfiltration, ultrafiltration						
Flottation						

Niveaux d'émission associés à la MTD (NEA-MTD) pour les émissions directes dans une masse d'eau réceptrice

	NEA-MTD (1) (moyenne journalière)						
Paramètre	Général	Laiteries	Transformation de fruits et légumes	Transformation d'oléagineux et de raffinage des huiles végétales	Production d'amidon	Production de sucre	
Demande chimique en oxygène (DCO)	25-100 mg/L	25-125 mg/L	25-120 mg/L	25-200 mg/L	25-185 mg/L	25-155 mg/L	
Matières en suspension totales (MEST)	4-50 mg/L						
Azote total (NT)	2-20 mg/L						
Phosphore total (PT)	0,2-2 mg/L	0,2-4 mg/L	0,2-5 mg/L	0,2-10 mg/L			

⁽¹⁾ Les NEA-MTD ne s'appliquent pas aux émissions résultant de la meunerie, de la transformation du fourrage vert et de la production d'aliments secs pour animaux de compagnie et d'aliments composés pour animaux.

Niveau indicatif de performance environnementale pour les rejets d'effluents aqueux spécifiques						
Secteur	Produit	Unité	Rejets d'effluents aqueux spécifiques (moyenne annuelle)			
Alimentation animale	Aliments humides pour animaux de compagnie	m³/tonne de produits	1,33-2,4			
Production de bi	ère	m³/hL de produits	0,15-0,50			
	Lait de consommation	m³/tonne de	0,3-3,0			
Laiteries	Fromage	matières	0,75-2,5			
	Poudre	premières	1,2-2,7			
	Transformation des pommes de terre	3.6	4,0-6,0			
Fruits et légumes Transformation des tomates lorsque le recyclage d'eau est possible		m³/tonne de produits	8,0-10,0			
Transformation	de la viande	m³/tonne de matières premières	1,5-8,0			
Transformation d'oléagineux et	Trituration et raffinage intégrés des graines de colza ou de tournesol	m³/tonne	0,15-0,75			
le raffinage des huiles	Trituration et raffinage intégrés des graines de soja	d'huile produite	0,8-1,9			
végétales	Raffinage isolé		0,15-0,9			
Boissons non ald fruits et légume	coolisées et nectars/jus élaborés à partir de s transformés	m³/hl de produit	0,08-0,20			
	Transformation de la pomme de terre pour la production d'amidon natif uniquement	m³/tonne de	0,4-1,15			
Production d'amidon	Transformation du maïs et/ou du blé en vue de la production d'amidon natif en association avec de l'amidon modifié et/ou hydrolysé	matières premières	1,1-3,9			
Fabrication de sucre	Transformation de la betterave sucrière	m³/tonne de betteraves	0,5-1,0			

3 - Conclusions sur les MTD pour la production de bière

3.1 - Efficacité énergétique

MTD 18. Application d'une combinaison appropriée des techniques de la MTD 6 et des techniques ci-dessous :

- Empâtage à température plus élevée (environ 60°C) : réduction de l'utilisation d'eau froide
- Diminution du taux d'évaporation durant la cuisson du moût : e.g. de 10% à 4% par heure, par système de cuisson en 2 phases, par ébullition dynamique à basse pression
- Augmentation du degré de brassage à haute densité : production d'un moût concentré, d'où réduction de son volume et de l'utilisation d'énergie associée

3.3 - Déchets

MTD 19. Réduction de la quantité de déchets à éliminer, en appliquant une ou plusieurs des techniques suivantes :

- Récupération et (ré)utilisation de la levure après fermentation : après la fermentation, la levure est recueillie et peut être partiellement réutilisée dans le procédé de fermentation ou bien être utilisée à d'autres fins, notamment pour l'alimentation des animaux, dans l'industrie pharmaceutique ou en tant qu'ingrédient alimentaire, ou bien dans une unité de traitement anaérobie des effluents aqueux en vue de la production de biogaz.
- Récupération et (ré)utilisation de matières filtrantes naturelles : Après traitement chimique, enzymatique ou thermique, les matières filtrantes naturelles (par exemple, la terre de diatomées) peuvent être partiellement réutilisées dans le procédé de filtration. Les matières filtrantes naturelles peuvent aussi être utilisées, par exemple, comme amendement du sol.

4 - Conclusions sur les MTD pour les laiteries

4.1 - Efficacité énergétique

MTD 21. Application d'une combinaison appropriée des techniques de la MTD 6 et des techniques ci-dessous :

- Homogénéisation partielle du lait,
- Homogénéisateur à haut rendement énergétique,
- Utilisation de pasteurisateurs en continu, à l'aide d'échangeurs thermiques à écoulement continu,
- Echangeur thermique à récupération de chaleur dans la pasteurisation,
- Traitement de lait à ultra-haute température (UHT) sans pasteurisation intermédiaire,
- Séchage en plusieurs étapes pour la production de poudre,
- Pré-refroidissement de l'eau glacée, à l'aide d'échangeurs à plaques par exemple.

4.3 - Déchets

MTD 22. Réduction de la quantité de déchets à éliminer, en appliquant une ou plusieurs des techniques suivantes :

- Fonctionnement optimisé des centrifugeuses ;
- Pour la production de beurre, rinçage du réchauffeur de crème à l'aide de lait écrémé ou d'eau, ensuite récupérés et réutilisés, avant les opérations de nettoyage,
- Pour la fabrication de crème glacée, congélation en continu de la crème glacée,
- Pour la fabrication de fromage,
 - o Réduction au minimum de la production de lactosérum acide par un traitement rapide permettant de réduire la formation d'acide lactique,
 - Récupération et utilisation du lactosérum pour la production de lactosérum en poudre, concentrés de protéines de lactosérum, lactose ou pour alimentation animale ou dans unité de production de biogaz.

7 - Conclusions sur les MTD pour le secteur des fruits et légumes

7.1 - Efficacité énergétique

MTD 27. Application d'une combinaison appropriée des techniques de la MTD 6 et de la réfrigération des fruits et légumes avant surgélation : avant que les fruits et légumes n'entrent dans le tunnel de congélation, leur température est abaissée à environ 4 °C par un contact direct ou indirect avec de l'eau froide ou de l'air de refroidissement. L'eau peut être éliminée de la denrée alimentaire puis recueillie en vue de sa réutilisation dans le procédé de refroidissement.

<u>11 – Conclusions sur les MTD pour les boissons non alcoolisées et les nectars / jus élaborés à partir de fruits et légumes transformés</u>

MTD 33. Application d'une combinaison appropriée des techniques de la MTD 6 et des techniques ci-dessous :

- Utilisation d'un seul pasteurisateur pour la production des nectars / jus au lieu de deux pour le jus et la pulpe ;
- Transport hydraulique du sucre : une partie du sucre étant déjà dissoute pendant le transport, l'apport énergétique nécessaire pour dissoudre le sucre lors du procédé est moindre ;
- Homogénéisateur à haute efficacité énergétique pour la production de nectar/jus.

<u>14 - Description des techniques</u>

14.1. Émissions dans l'eau

La section 14.1 des conclusions sur les meilleures techniques disponibles décrit les techniques associées aux émissions dans l'eau citées dans les parties précédentes.